

Student Name:

TIME ALLOWED FOR THIS PAPER

Suggested: Reading and Working time for Cal Free paper:

25 minutes in class under test conditions

1

MATERIAL REQUIRED / RECOMMENDED FOR THIS PAPER

TO BE PROVIDED BY THE SUPERVISOR Question/answer booklet

TO BE PROVIDED BY THE CANDIDATE

Standard Items: pens, pencils, pencil sharpener, highlighter, eraser, ruler, drawing templates, Calculator

IMPORTANT NOTE TO CANDIDATES

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be attempted	Suggested working time (minutes)	Marks available
Calculator Free	3	3	25	40
			Marks available:	/40
			Task Weighting	7% for the pair of units

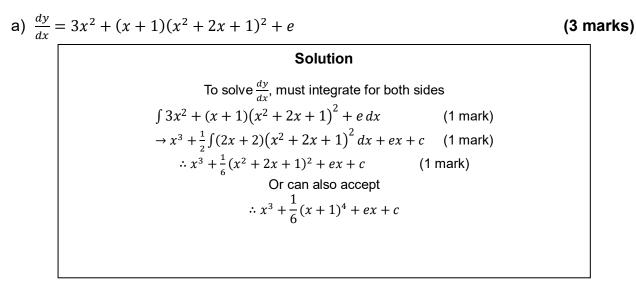
Instructions to candidates

(13 marks)

Consider $\frac{dy}{dx} = f(x)$, this is called a differential equation, more specifically a first order differential equation. To solve or find the general solution of a differential equation is to do the reverse of differentiation.

To find the general solution of a differential equation, then some additional information must be required.

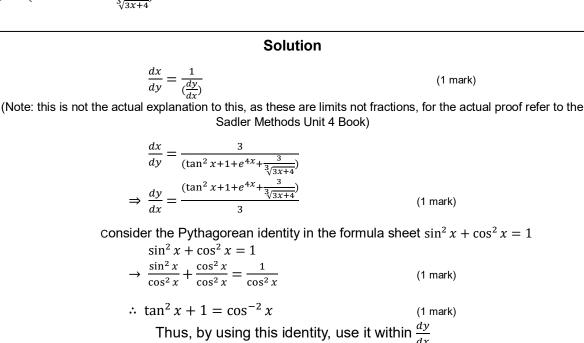
Solve the following differential equations to find the general solution or particular solution.



b)
$$\frac{dy}{dx} = \frac{13x}{\sqrt{4x^2 - 7}} at (2, \frac{3}{4})$$

Solution $\int 13x(4x^2 - 7)^{\frac{1}{2}} dx \rightarrow \frac{13}{8} \int 8x (4x^2 - 7)^{\frac{1}{2}} dx \qquad (1 \text{ mark})$ $\rightarrow y = \frac{13}{12} (4x^2 - 7)^{\frac{3}{2}} + c \qquad (1 \text{ mark})$ $\frac{3}{4} = \frac{13}{12} (4(2)^2 - 7)^{\frac{3}{2}} + c \rightarrow c = -\frac{57}{2} \qquad (1 \text{ mark})$ $\therefore y = \frac{13}{12} (4x^2 - 7)^{\frac{3}{2}} - \frac{57}{2} \qquad (1 \text{ mark})$

(4 marks)



(1 mark)

(1 mark)

 $\frac{dy}{dx} = \frac{\left(\cos^{-2}x + e^{4x} + \frac{3}{\sqrt{3x+4}}\right)}{3}$ $\rightarrow \frac{dy}{dx} = \frac{1}{3}\cos^{-2}x + \frac{1}{3}e^{4x} + 3(3x+4)^{\frac{1}{3}}$

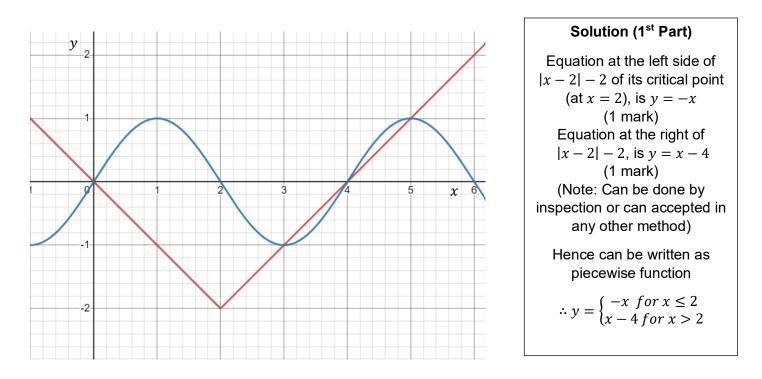
Hence, $\therefore y = \frac{1}{3} \tan x + \frac{1}{12} e^{4x} + \frac{3}{4} (3x+4)^{\frac{4}{3}} + c$

 $\rightarrow \int \frac{dy}{dx} \, dx = \int \frac{1}{3} \cos^{-2} x + \frac{1}{3} e^{4x} + 3(3x+4)^{\frac{1}{3}} \, dx$

c) $\frac{dx}{dy} = \frac{3}{(\tan^2 x + 1 + e^{4x} + \frac{3}{\sqrt{3x+4}})}$ (*Hint: manipulate the Pythagorean identity*)

(6 marks)

Determine the exact area of the region trapped by $y = \sin \frac{1}{2}\pi x$ and y = |x - 2| - 2, from the origin to x = 3. (8 marks)



Solution (2nd Part)
Hence, let
$$A_1$$
 be the area of the first portion from $x = 0$ to $x = 2$

$$A_1 = \int_0^2 \left(\sin\left(\frac{\pi x}{2}\right) \right) - (-x) \, dx \qquad (1 \text{ mark})$$

$$\Rightarrow A_1 = \left[\frac{x^2}{2} - \frac{2}{\pi} \cos\left(\frac{x\pi}{2}\right)\right]_0^2$$

$$\therefore A_1 = \left(\frac{4}{\pi} + 2\right) units^2 \qquad (1 \text{ mark})$$
Let A_2 be the area from $x = 2$ to $x = 3$

$$A_2 = \int_2^3 \left(\sin\left(\frac{\pi x}{2}\right) \right) - (x - 4) \, dx \qquad (1 \text{ mark})$$

$$\Rightarrow A_2 = \left[-\frac{x^2}{2} - \frac{2}{\pi} \cos\left(\frac{x\pi}{2}\right) + 4x \right]_2^3$$

$$\therefore A_2 = \left(\frac{3}{2} - \frac{2}{\pi}\right) units^2 \qquad (1 \text{ mark})$$
Let the total area be represented as A_T

$$A_T = A_1 + A_2$$

$$\Rightarrow A_T = \left(\frac{4}{\pi} + 2\right) + \left(\frac{3}{2} - \frac{2}{\pi}\right) (1 \text{ mark})$$

$$\therefore A_T = \left(\frac{2}{\pi} + \frac{7}{2}\right) units^2 \qquad (1 \text{ mark})$$

a) Find
$$\frac{d}{dx}(\frac{x}{\cos^2 x} + x \sin x)$$

 $\frac{d}{dx}\left(\frac{x}{\cos^2 x}\right) + \frac{d}{dx}(x\sin x)$ $\rightarrow \frac{(1)(\cos^2 x) - (x)(2\sin x\cos x)}{\cos^4 x} + (1)(\sin x) + (x)(\cos x)$ (2 marks, by use of quotient rule/product rule, doesn't matter) $\rightarrow \frac{\cos^2 x - 2x\sin x\cos x}{\cos^4 x} + \sin x + x\cos x$ $\rightarrow \frac{\cos^2 x}{\cos^4 x} - \frac{2x\sin x\cos x}{\cos^4 x} + \sin x + x\cos x \qquad (1 \text{ mark})$ $\rightarrow \frac{1}{\cos^2 x} - \frac{2x}{\cos^2 x}\left(\frac{\sin x}{\cos x}\right) + \sin x + x\cos x$ $\therefore \frac{dy}{dx} = \sin x + x\cos x + \frac{2x\tan x}{\cos^2 x} + \frac{1}{\cos^2 x} \qquad (1 \text{ mark})$

 $\therefore \frac{d}{dx} \left(\frac{x}{\cos^2 x} + x \sin x \right) = \sin x + x \cos x + \frac{2x \tan x}{\cos^2 x} + \frac{1}{\cos^2 x}$

b) Hence, by using $\frac{d}{dx}(x \sin x)$, find $\int \frac{4x \tan x}{\cos^2 x} dx$.

Firstly, find
$$\frac{d}{dx}(x \sin x)$$

 $\frac{d}{dx}(x \sin x) = \sin x + x \cos x$ (1 mark)

By using the answer we had in a), we integrate both sides.

$$\int_{-\infty}^{\infty} \frac{d}{dx} \left(\frac{x}{\cos^2 x} + x \sin x \right) dx = \int \sin x + x \cos x + \frac{2x \tan x}{\cos^2 x} + \frac{1}{\cos^2 x} dx$$

$$\int_{-\infty}^{\infty} \frac{x}{\cos^2 x} + x \sin x + c = -\cos x + \int x \cos x dx + \int \frac{2x \tan x}{\cos^2 x} dx + \tan x$$
(1 mark)
Back to finding $\frac{d}{dx} (x \sin x)$, we integrate both sides

$$\int \frac{d}{dx} (x \sin x) dx = \int \sin x + x \cos x dx$$

$$\rightarrow x \sin x + c = -\cos x + \int x \cos x dx$$

$$\rightarrow \int x \cos x dx = x \sin x + \cos x + c$$
(1 mark)
Hence, from this answer

$$\frac{x}{\cos^2 x} + x \sin x + c = -\cos x + (x \sin x + \cos x) + \int \frac{2x \tan x}{\cos^2 x} dx + \tan x$$
(1 mark)

$$\rightarrow \frac{x}{\cos^2 x} + c = \int \frac{2x \tan x}{\cos^2 x} dx + \tan x$$
(1 mark)

$$2\int \frac{2x \tan x}{\cos^2 x} dx = \frac{x}{\cos^2 x} - \tan x + c$$
(1 mark)

$$2\int \frac{2x \tan x}{\cos^2 x} dx = \frac{2x}{\cos^2 x} - 2 \tan x + c$$
(1 mark)

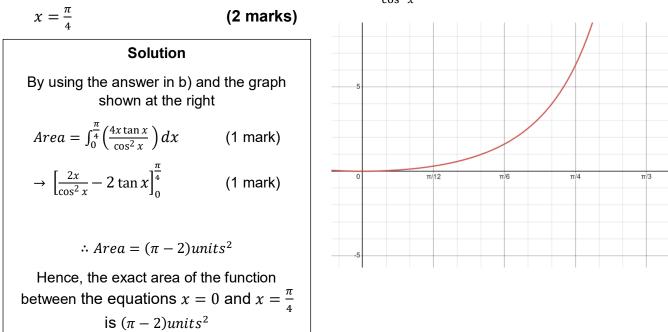
(12 marks)

(2 marks)

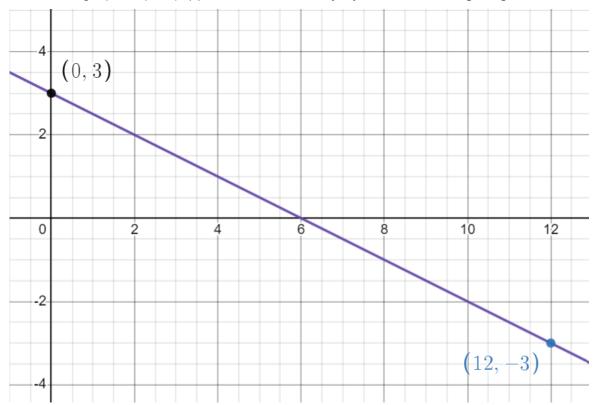
(6 marks)

-CF

c) Hence find the exact area of the function $f(x) = \frac{4x \tan x}{\cos^2 x}$ between the equations x = 0 and



(7 marks)

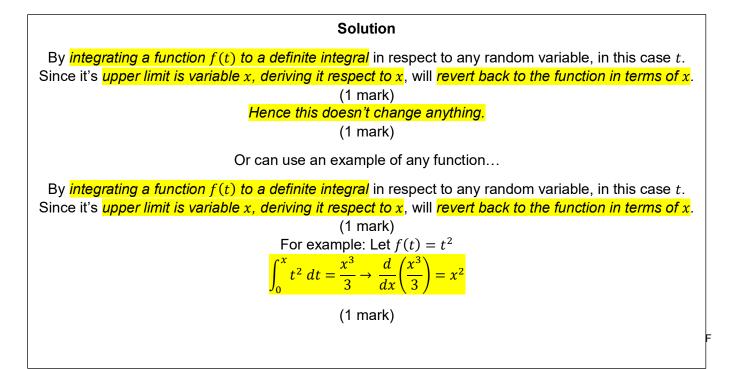


Shown below is a graph of y = f(t), and consider only by the interval of [0,12]

A man saw this graph and said he wanted to make another equation relating to this, but involving with derivatives and integrals. He came up with the equation of F(x), where...

$$F(x) = \frac{d}{dx} \left(\int_0^x f(t) \, dt \right)$$

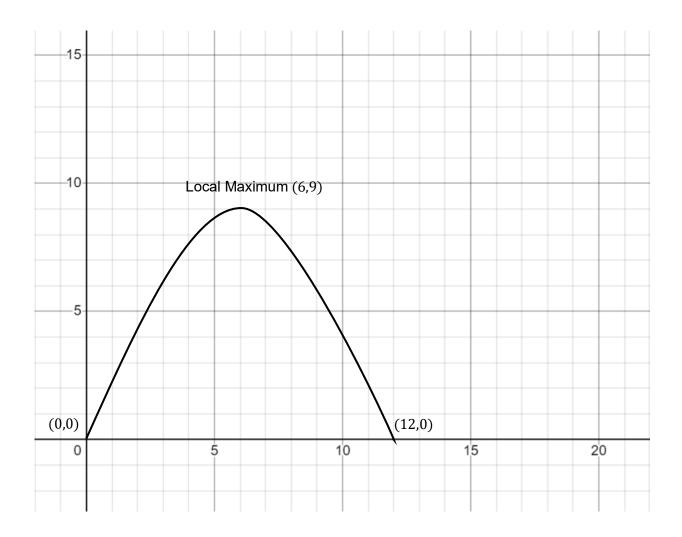
Explain by using the knowledge of the fundamental theorem of calculus, why this doesn't change anything. (2 marks)

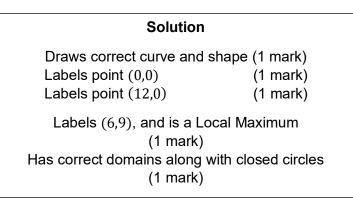


The man then wanted to make another equation A(x), where...

$$A(x) = \int_0^x f(t) \, dt$$

Sketch A(x) below, labelling the local maximum/minimum, the coordinates at x = 6 and x = 12 for the given interval [0,12]. (5 marks)





END OF CALCULATOR-FREE

Additional working space

Question number: _____